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Power laws in microrheology experiments on living cells: Comparative analysis and modeling
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We compare and synthesize the results of two microrheological experiments on the cytoskeleton of single
cells. In the first one, the creep function J(r) of a cell stretched between two glass plates is measured after
applying a constant force step. In the second one, a microbead specifically bound to transmembrane receptors
is driven by an oscillating optical trap, and the viscoelastic coefficient G, (w) is retrieved. Both J(z) and G,(w)
exhibit power law behaviors: J(£)=A((t/1))* and |G,(w)|=Gy(w/ wy)? with the same exponent a=0.2. This
power law behavior is very robust; « is distributed over a narrow range, and shows almost no dependence on
the cell type, on the nature of the protein complex which transmits the mechanical stress, nor on the typical
length scale of the experiment. On the contrary, the prefactors Ay and G, appear very sensitive to these
parameters. Whereas the exponents « are normally distributed over the cell population, the prefactors A, and
G, follow a log-normal repartition. These results are compared with other data published in the literature. We
propose a global interpretation, based on a semiphenomenological model, which involves a broad distribution
of relaxation times in the system. The model predicts the power law behavior and the statistical repartition of
the mechanical parameters, as experimentally observed for the cells. Moreover, it leads to an estimate of the

largest response time in the cytoskeletal network: 7,,~ 1000 s.
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I. INTRODUCTION

To perform their functions, living cells must adapt to ex-
ternal stresses and to varying mechanical properties of their
environment. Thus, rheological properties (i.e., stress-strain
relationships) are key features of living cells. Actually, me-
chanics play a major role in many biological processes such
as cell crawling, wound healing, protein regulation and even
apoptosis [1]. Conversely, several pathologies, such as me-
tastasis, asthma, or sickle cell anemia, involve alteration of
the mechanical properties of a given cell type. All these pro-
cesses are mainly controlled by the structure and mechanical
properties of the cytoskeletal network. This network is a dy-
namical assembly of macromolecules, principally made of
actin filaments, intermediate filaments and microtubules, and
interacting with a variety of associated proteins, crosslinkers,
and molecular motors. The mechanical properties of the cy-
toskeletal network are therefore the subject of many experi-
mental studies.

These studies have been made possible by the develop-
ment of numerous quantitative micromanipulation tech-
niques, such as micropipettes [2], cell poking [3], shear flow
cytometry [4,5], atomic force microscopy (AFM) [6-8], mi-
croplates [9-11], optical tweezers [12—14], optical stretchers
[15,16], magnetic tweezers [17,18], magnetic twisters
[12,19], and particle tracking [20-22]. These techniques are
complementary, in the sense that they probe the behavior of
the intracellular medium at different length scales and time
scales, and that they implement stresses and strains in differ-
ent geometries and with different orders of magnitude.

Most recent results in microrheology of the intracellular
medium have demonstrated that it is a complex viscoelastic
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medium which cannot be simply modelized by associating a
finite, small number of elastic and viscous elements. Indeed,
the viscoelastic complex modulus of the cell medium exhib-
its a power law behavior on a wide frequency range [13,23].
Similarly the creep function behaves as a power law of
elapsed time [11,24]. This clearly indicates that there is a
broad and dense distribution of dissipation times in the cell,
and that the mechanisms responsible for the storage of elastic
energy and its dissipation are strongly correlated. Such be-
havior, characteristic of structural damping, is found in other
complex viscoelastic systems, like colloids, gels, pastes, and
more generally the class of so-called “soft glassy materials.”
However, a detailed interpretation of the origin of structural
damping behavior in the cytoskeletal network has still to be
built.

One of the objectives of this paper is to propose a global
description of the mechanics of the cytoskeletal network,
consistent with the whole set of data gathered from numer-
ous experiments performed up to now. It aims at contributing
to answer several of the following questions: How might one
compare the results of experiments performed with different
microrheological techniques and/or in various experimental
conditions? Is there a unified behavior at the nanoscale and
microscale level and at the scale of the whole cell? How does
this behavior depend on the cell type, and on the nature of
the receptor through which the stress is applied? Is it pos-
sible to build a phenomenological model which predicts the
power law response functions and also the peculiar disper-
sion of results obtained from a set of cells of the same type?

The paper is organized as follows: Sec. II presents the
experimental protocols and the two techniques used here to
measure either the local dynamical response of the actin net-
work to an oscillatory force (optical tweezers) or the creep
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function at the scale of the whole cell (uniaxial stretching).
The results of the two experiments are reported in Sec. III.
The power laws measured for the viscoelastic modulus vs
frequency and for the creep function vs time are fully con-
sistent. The prefactor G, of the power law, i.e., the elastic
modulus measured for the same cell type at the reference
frequency f=1 Hz, follows a log-normal distribution. A com-
parison between different cell types and receptors shows that
the value of the exponent « in the power law is remarkably
homogeneous: a=0.2. Section IV presents a review of other
data collected in the literature. The common features emerg-
ing from the different cell types, probed by different tech-
niques and in various experimental conditions are under-
lined. The possible origins for some discrepancies, mainly in
the prefactor of the power laws, are discussed. An original,
semiphenomenological model for the cell mechanical behav-
ior is set out in Sec. V. We assume that the cell is built of a
random infinite series of elementary mechanical units, fol-
lowing on average a scaling law repartition. It leads to cor-
rect predictions for the response functions, including power
law behaviors, normal and log-normal distributions, respec-
tively, for the exponent « and the prefactor G. Section VI
details the quantitative comparison with experimental data,
leading to an estimate for the largest relaxation time in the
cell 7,

II. EXPERIMENTAL SETUPS AND PROTOCOLS
A. Cell culture

We studied the microrheology of two primary cell cul-
tures, mouse ear fibroblasts and rat alveolar macrophages,
and four different cell lines: C2 and C2-7 myogenic cells,
A549 human alveolar epithelial cells, Madin-Darby Canine
Kidney (MDCK) epithelial cells, and mouse fibroblasts
L929.

The C2 myogenic cell line is derived from the skeletal
muscle of adult CH3 mice. The C2-7 cell line is a subclone
of the C2 cell line. They were kindly provided by Lambert
and Mege (INSERM U440, Institut du Fer a Moulin, Paris)
and by Paulin (Biologie Moléculaire de la Différentiation EA
300, Université Paris VII, Paris). A549 are human lung car-
cinoma cells (American Type Culture Collection, Rockville,
MD). MDCK cells were kindly provided by Chavrier (Mem-
brane and Cytoskeleton Dynamics, CNRS, Institut Curie,
Paris). Alveolar macrophages were isolated from Sprague-
Dawley rats by broncho-alveolar lavages and resuspended in
RPMI medium supplemented with 0.1% BSA [25]. Other
cells were grown at 37 °C in a humidified 5% CO,—-95% air
atmosphere, in Dulbecco’s modified essential medium
(DMEM) supplemented with 10% fetal calf serum, 2 mM
glutamine, 100 units/ml penicillin, and 50 mg/ml strepto-
mycin.

For creep experiments, the cells were detached from cul-
ture flasks (1% trypsin and 1 mM EDTA), centrifugated at
900 rpm for 3 min, diluted in DMEM supplemented with
15 mM HEPES, and maintained under smooth agitation for
2 hat 37 °C.

For optical tweezers experiments, the cells were detached
from culture flasks 24 h before experiments and plated at a
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density of about 300 cells/mm?, in complete culture medium
with serum, on glass coverslips (22 mm X 22 mm) coated
with fibronectin (5 pg/mL for 3 h at room temperature). For
optical tweezers experiments on A549 via ICAM-I,
10 ng/ml of recombinant human Tumor Necrosis Factor-a
was added to this medium to induce the expression of
ICAM-1.

B. Microplates preparation

Glass microplates were cleaned for 10 min in a Piranha
mixture—2/3 pure sulfuric acid, 1/3 hydrogen peroxide
30%, and rinsed in water.

For nonspecific binding, microplates were dipped
in a bath of 90% ethanol, 8% water, 2%
3-aminopropyltriethoxysilane for 2 h, rinsed in ethanol, and
finally incubated in 98% water, 2% glutaraldehyde 1 h be-
fore the experiment.

For specific binding to integrins, microplates were dipped
in a bath of 5 mL. DMEM at 1 mg/mL fibronectine F-1141
(Sigma), 2 h before the experiment.

For specific binding to cadherins, microplates were di-
rectly coated in the experimental chamber to avoid drying of
the proteins. The microplates tips, previously coated with
organopolysiloxane (Sigmacote, Sigma) [26], were first
dipped, for 2 h, in a 150 uL drop of borate buffer containing
2 uL of a 2 ug/ul Fcy antibody solution (Jackson Immu-
noResearch, West Grove, PA, USA) [27]. After rinsing with
borate buffer, microplates were dipped for 2 h in a 200 L
borate buffer containing 25 ug of NCad-Fc “chimeric” pro-
tein. Then the plates tips were rinsed and finally dipped in a
2 mL borate buffer containing 10 mg/mL BSA (Sigma-
Aldrich, France), to ensure saturation of residual nonspecific
adhesion sites.

C. Bead coatings and specific attachment to the cells

For a specific binding to integrins, carboxylated silica mi-
crobeads (3.47 um diameter, Bangs Laboratories Inc., IN,
USA) were coated with a polypeptide containing the
arginine-glycine-aspartic (RGD) sequence (PepTite-2000,
Telios pharmaceuticals, CA, USA), according to the manu-
facturer’s procedure.

For specific binding to ICAM-1 (CD534), the same silica
beads were first coated with goat antimouse IgG (BD Bio-
sciences, 5 ug of monoclonal antibody for 100 ug of beads,
in PBS for 30 min at 4 °C under gentle agitation), and sec-
ond with mouse antihuman CD54 (BD Biosciences, same
protocol).

Before use, coated beads were incubated in DMEM
supplemented with 1% BSA for 30 min at 37 °C, to block
nonspecific binding. Beads were then added to the cells
(~5 ug of beads per coverslip) and further incubated for
30 min at 37 °C. Unbound beads were washed away with
medium.

D. Measurements of the creep function J(f)

The creep function of a single living cell is measured by
means of a home-made stretching rheometer, which has been
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FIG. 1. View of the uniaxial stretching rheometer. A single cell
is attached by specific or nonspecific binding to a rigid glass micro-
plate (bottom) and a flexible one (top). The bar length is 10 um.
The stiffness of the flexible plate is calibrated, so that one simulta-
neously measures the force applied to the cell, and its deformation.
A feedback loop allows us to apply a constant stress to the cell, and
thus to retrieve its creep function J(r).

described in detail elsewhere [11,28]. This setup takes ad-
vantage of a simple uniaxial geometry, since the cell is
stretched between two glass microplates, a rigid one and a
flexible one [9]. The two arms bearing the microplates are set
up on each side of the inverted microscope, perpendicularly
to the optical axis. An XYZ piezoelectric stage, interfaced
with a computer, allows to accurately control the gap be-
tween the plates. The stiffness of the flexible plate is inde-
pendently calibrated, therefore it is possible to simulta-
neously measure the force applied to the cell, and its
deformation. A real time detection and an efficient feedback
loop were implemented, in order to monitor and control the
flexible plate deflection. Thus the setup can be used as a
constant stress micro-rheometer. The whole setup is isolated
from vibrations and is maintained at 37+0.2 °C.

Each cell stretched in the gap between the microplates is
visualized under bright light illumination and its image is
recorded with a digital charge-coupled device (CCD) cam-
era, as shown for instance in Fig. 1. The position of the tip of
the thin flexible plate is held constant to ensure that the plate
deflection and therefore the applied force remain constant.
The strain &(z) is defined as [L(z)—L,]/L,, where L(r) repre-
sents the cell length at time ¢ and Ly=L(0) its initial length
when the force step is applied. The applied stress oy is taken
as the ratio between the constant applied force F, and an
effective area A of the cell section. An estimate of this effec-
tive area is given by the mean value of the measured contact
areas of the cell at each microplate, assumed to be circular.
For each cell, the creep function J(¢) is derived from

J(t) = e(t)] oy (1)

E. Measurement of the complex viscoelastic modulus
G (w)

An optical tweezers setup is used to measure the vis-
coelastic modulus of the cytoskeletal network, by applying
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FIG. 2. Principle of the measurements of the complex viscoelas-
tic modulus G(w), using the optical tweezers setup. A silica micro-
bead, specifically bound to given membrane receptors, is trapped in
the focused laser beam, and is used as a handle to apply a force to
the cytoskeleton. The experimental chamber is submitted to a sinu-
soidal displacement at frequency f=w/2, while the optical trap is
kept at a fixed position. The applied force and the cell deformation
are deduced from the displacements of the bead x;, and of the cham-
ber x..

an oscillating force to a microbead specifically bound to
transmembrane receptors (see cell culture and coating). The
setup and force calibration have been previously described
[13,29]. The experimental chamber is mounted on a piezo-
electric stage and is submitted to a sinusoidal displacement at
frequency f=w/2, while the trap is kept at a fixed position
(Fig. 2). The displacements of the chamber x.(¢) and of the
bead x,(¢) are recorded with a fast (500 Hz) CCD camera. At

any time, the force F (t)=IA7 (w)exp(jwt) exerted on the bead
is calculated from the bead-trap distance x;, according to the
calibration curves, while the cellular deformation is related
to the relative displacement x(f)=x,(t) —x,(1) =%(w)exp(j wt)

between the chamber and the bead. Here F(w) and £(w) are
complex numbers, with a relative nonzero phase. Using La-
bview®, we generate a sequence of successive sinusoidal
signals at given frequencies (from 0.05 to 50 Hz), which
control the piezoelectric ceramic motion x.(f), and a synchro-
nous sequence of pulses to trigger the image acquisition. In
order to minimize a possible actin remodeling at the bead
periphery, or the effect of a slow drift of the bead on the cell
surface, the total duration of a measurement on the same
single cell never exceeds 2.5 min, a time short as compared
to the 30 min incubation time for the adherence of the bead
to the cell.

The derivation of the complex modulus G,(w) from F (w)

and %(w) is described in Appendix B, and requires formula
(B5):

F(@) = 27RG (0)f(0)f(w). )

Here the cell is considered as an elastic homogeneous
medium. The dimensionless factor f(®), for which we cal-
culated an analytic expression [formula (B3)] [12], accounts
for the actual immersion of the bead into the cell. The pa-
rameter O is defined as half the angle of the immersion cone
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FIG. 3. (Color online) Axial view of a bead (3.47 wm in diam-
eter) partially embedded into the cell edge, and trapped in the op-
tical tweezers. The force F is applied tangentially to the cell mem-
brane. The derivation of the complex viscoelastic modulus G(w)
takes into account the value of the immersion angle ® of the bead
into the cell, estimated from the image.

of the bead (of radius R) into the medium. Since we restrict
our measurements to the beads bound to the side of the cells,
O is estimated from axial image recordings in the vertical
direction (Fig. 3).

III. MEASUREMENTS OF THE VISCOELASTIC
PARAMETERS FOR DIFFERENT CELL TYPES

A. Creep function and viscoelastic modulus
of premuscular C2 cells

A typical recording of the creep function J(¢), obtained for
a single C2 cell with the stretching rheometer, is shown in

e
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FIG. 4. (Color online) Plot of the creep function J(z), measured
for a single C2 myoblast with the stretching rheometer. Here the
cell is attached to the glass plates through glutaraldehyde coating.
Over three decades in time, J(¢) is very well fitted by a power law
J(t)=Ao(t/ty). For this particular cell, the exponent « is found
equal to 0.25.
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FIG. 5. (Color online) Histograms of the distributions of the
exponents « (a) and of the logarithms of the prefactors In(G) (b),
measured with the stretching rheometer on a set of 43 C2 myo-
blasts, attached to the plates through glutaraldehyde coating. The
cumulative distributions of @ and In(G,) are also plotted (black
dots). They are correctly fitted by an error function 1+erf[(x
—xp)/ VEU'] (blue lines). This indicates that the distribution of the
exponents « is a normal distribution, and that the distribution of the
prefactors G is log-normal. The fits give the best estimates for the
average exponent (a)=0.242+0.013, and for the median value of
the prefactor Goy=exp({In(Gy)))=640(+80/-70)Pa.

Fig. 4. Over three orders of magnitude in time (0.1<<¢
<100 s), J(1) is remarkably well fitted by a power law J(z)
=Ay(t/t5)% with @=0.25 and A;=0.017 Pa~!. We stress the
fact that #; is not a parameter of the fit, but an arbitrary
reference time, for which J(z) takes the value A,. The dimen-
sion of A is therefore the same as J. For all the measure-
ments, we chose for convenience 75=1 s. As already shown
in [11], any attempt to adjust J(z) by a sum of a few expo-
nential functions in the full time range leads to a much
poorer agreement. There is an exact equivalence between a
power law behavior of J(z) as a function of time ¢, and a
power law behavior of the complex viscoelastic modulus
G,(w) as a function of the frequency w [Egs. (A5)—(A7) in
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FIG. 6. (Color online) Plot of the modulus |G,| and of the phase
& of the complex viscoelastic coefficient G,(w) measured with op-
tical tweezers, as a function of the frequency f=w/2r, for a single
C2 myoblast. The bead is coated with RGD peptides and binds to
integrins. |G,| behaves as a power law of f over three frequency
decades, with an exponent « here found equal to 0.30. The phase
shift & remains constant in the studied frequency range. This is
consistent with the power law behavior of the creep function J(z)
measured with the stretching rheometer for the same C2 cell type.

Appendix A]. Consequently, the value of |G,(w)| derived
from this experiment may be expressed as

oty Go( w )“’ 3)

|Ge(w)|=A—OF(1+a)= o

where I represents the Euler function (defined in Appendix
A). From Fig. 4, one can calculate a typical value G,
=|G,(wy)|=103 Pa for this particular curve at the chosen ref-
erence frequency wy/2m=1/ty=1 Hz.

A remarkable feature is that all the tested cells belonging
to the same C2 population exhibit a similar power law be-
havior. Figures 5(a) and 5(b) show, respectively, the mea-
sured distributions of the exponent « and of the logarithm
In(G,) from a set of 43 different C2 cells, glued to the glass
plate through a glutaraldehyde coating. On the same Figs.
5(a) and 5(b) are also plotted the cumulative distributions of
a and In(G)). The cumulative distributions are well adjusted
by an error function

E(x) 1 . 1 f(x—x())
X)=_"+ _¢€r
272 N

1 1 x (x’ —x0)2> ,
=5+ a'\/;rjo exp(— 202 dx’. (4)

One notices that the distribution of exponents a closely fol-
lows a normal law, while the distribution of prefactors G,
appears log normal. From the erf fits one retrieves the best
estimates of the average exponent of the power law ()
=0.242, of the standard deviation 0,=0.082, and of the stan-
dard error A,=0.013 (see Table I). Similarly, for In(G,), the
estimated averaged value is (In(G,))=6.46, the standard de-
viation is 0;=0.82, and the standard error is A;=0.12. Ac-
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FIG. 7. (Color online) Histograms of the distributions of the
exponents « (a) and of the logarithms of the prefactors In(G) (b),
measured with the optical tweezers on a set of 22 C2 myoblasts.
The beads bind to integrins via RGD coating. The cumulative dis-
tributions (black dots) are well adjusted by an error (erf) function
(blue line). The best estimate for the average exponent is (a)
=0.208+0.021, and for the median value of the prefactor is Gy,
=310(+130/-100)Pa.

cordingly, for |G,(w)| at 1 Hz, one infers the median value
Goy=exp(In(Gy)))=640(+80/-70) Pa. Notice that the
mean value (G,)=1060=190 Pa is higher than G,,, which is
consistent with a log-normal, nonsymmetric distribution of
GO.

A parallel analysis was performed on the same C2 cell
type studied with the optical tweezers setup. In this case, by
applying a sequence of oscillating stresses to a single cell at
different frequencies, one directly measures the complex vis-
coelastic coefficient G,(w) as a function of w. In the experi-
ments described below, all the beads are RGD coated and
bind to the cells through integrins. In Fig. 6 the measured
values of the modulus |G,| and of the phase & of G (w) are
shown for a single C2 cell, as a function of the frequency
f=w/2, in the range 0.05-50 Hz. As in the cell stretching
experiment, |G,| behaves as a power law of f over three
frequency decades. For this particular cell, the exponent « is
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TABLE 1. Comparison of exponents a and prefactors G, measured for different cell types, using two microrheological techniques
(uniaxial stretching or optical tweezers), and through different adhesion receptors.

No.

o, (std. A, (std. og (std. Gy (Pa) (Gy) (Pa) of

Cell type (ay  deviation) error)  (In Gy) deviation) (std. error) (median value) (mean value) cells Technique/coating

Myoblasts 0.242 0.082 0.013  6.46 0.82 0.12 640 1060+190 43  Uniaxial stretching/

Cc2 (+80/-70) glutaraldehyd

Myoblasts 0.29 0.07 0.02 6.75 0.26 0.08 850 12 Uniaxial stretching/

C2 (+75/-65) cadherin

Myoblasts 0.208 0.098 0021 573  1.68 0.36 310 570+150 22 Optical tweezers/

Cc2-7 (+130/-100) RGD

Alveolar 0.219 0.067 0.014  6.04 0.82 0.17 420 705+155 23 Optical tweezers/

epithelials A549 (+80/-70) RGD

Alveolar 0.181 0.06 0.014 441 1.43 0.33 80 160+40 19 Optical tweezers/

epithelials A549 (+25/-20) anti-ICAM-1

Macrophages 025 0.11 0.04 7.70 0.46 0.16 2210 8 Uniaxial stretching/
(+390/-330) glutaraldehyd

Macrophages 0.20 0.08 0.03 7.55 0.73 0.27 1910 7 Uniaxial stretching/
(+600/-460) fibronectin

Fibroblasts 0.15 0.06 0.02 4.16 1.14 0.36 65 17090 10 Optical tweezers/

1929 (+25/-20) RGD

Fibroblasts 026 0.07 0.02 6.61 1.48 0.41 750 13 Uniaxial stretching/

primary cells (+380/-250) glutaraldehyd

Canin kidney 0.18 0.10 0.03 7.58 1.24 0.39 1950 36601150 10  Optical tweezers/

MDCK (+950/-600) RGD

found equal to 0.30, and the value G, of |G,| at 1 Hz is found
equal to 155 Pa. Moreover, the measured phase shift & re-
mains constant, within a good approximation, in the studied
frequency range. Its average value is equal to 0.45, very
close to the theoretically expected value am/2=0.47 [see
formula (A7) in Appendix A].

For a whole set of C2 cells tested with optical tweezers,
G, () present similar power law behaviors. Figures 7(a) and
7(b) show the distributions of the exponent @ and of the
logarithm In(G,) of |G,| at 1 Hz, measured for 22 different
C2 cells, together with the cumulative distributions of « and
In(Gy). As in Figs. 5(a) and 5(b), the « distribution follows a
normal law, while the distribution of G, appears log normal.
We have obtained the best estimates: {(a)=0.208+0.021,
Goy=310(+130/-100) Pa  (median value), and (Gy)
=570+150 Pa (mean value).

It is remarkable that the two experiments (uniform
stretching and local oscillating force), performed in quite dif-
ferent conditions, lead to the same power law behavior, with
approximately the same exponent a=0.22 (within experi-
mental error). However, one notices that the prefactor G,
differs in the two cases. Several possible origins of this dif-
ference will be discussed in Sec. IV.

B. Viscoelastic modulus of cells excited through different
receptors

With the optical tweezers setup, we have also performed
oscillating force experiments with alveolar epithelial cells
(A549). Here we compared the results obtained by using two

different mechanical receptors on which the stress is applied:
integrins and ICAM-1. ICAM (intercellular adhesion mol-
ecules) are transmembrane proteins which allow, for in-
stance, the macrophages to adhere and to migrate over the
pulmonary epithelium [30]. The beads are either coated with
RGD peptide or anti-ICAM-1 ligands. Except for the nature
of the receptor, the experimental protocols are identical in
the two cases. For each single cell, the observed behavior of
the elastic modulus G,(w) is very similar in both series of
experiments. It is also similar to the one described above for
C2 cells: |G,(w)| behaves as a power law of the excitation
frequency, while the phase J remains approximately con-
stant. The exponent « of the power law is close to 0.2 in both
cases. The results are summarized in Table I and in Figs. 8
and 9. Over two sets of cells (N=23 and 19, respectively),
one observes normal distributions for the exponent a: (@)
=0.219+0.014 for RGD coating and {(a@)=0.181+0.014 for
anti-ICAM-1 coating. The prefactor G at f=1 Hz follows a
log-normal  distribution, with median values Gy,
=420(+80/-70) Pa (RGD coating) and Ggy,=80(+25/
-20) Pa (anti-ICAM-1 coating). While the mean values ()
of the exponent appear very close to each other for both
coatings, the median value G, is found appreciably lower
when the stress is applied through ICAM-1 than when it is
applied through integrins.

Using the uniaxial rheometer we also compared the creep
functions of C2 myoblasts stretched (i) through nonspecific
mechanical receptors (plates coated with glutaraldehyde that
binds any protein of the cell surface—data already detailed
in the previous section) and (ii) through cadherins, the spe-
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FIG. 8. (Color online) Histograms of the distributions of the
exponents « (a) and of the logarithms of the prefactors In(Gy) (b),
measured with the optical tweezers on a set of 23 epithelial alveolar
cells A549. The beads bind to integrins via RGD coating. The dis-
tributions of a and G, are normal and log-normal, respectively.
From the erf fits of the cumulated distributions, the best estimate for
the average exponent is (@)=0.219+0.014, and for the median
value of the prefactor is Gy, =420(+80/-70)Pa.

cific proteins of cell-cell adhesion. In both cases, the creep
function is a week power law of the time. The two sets of
cells (Ny,=43 and N ,q=13) shows normal distributions for
the exponent @, with (ay,)=0.242+0.013 and (@)
=0.29£0.02. The prefactor G, at f=1 Hz follows a log-
normal distribution, with median values Gg,,=640(+80/
—70) Pa (glutaraldehyde) and G),=850(+75/-65) Pa (cad-
herin). Unlike the Integrin/ICAM-1 comparison in the previ-
ous paragraph, here the median values G, are very close to
each other for both coatings, while the mean value {a) of the
exponent is found appreciably higher when the stress is ap-
plied through cadherins than through glutaraldehyde. How-
ever, in both Integrin/ICAM-1 and Cadherin/Glutaraldehyde
comparisons, an increase of (@) is related to an increase of
Gy Such a correlation between (@) and G, values can be
understood by considering molecular motor activity for in-
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FIG. 9. (Color online) Histograms of the distributions of the
exponents « (a) and of the logarithms of the prefactors In(G) (b),
measured with the optical tweezers on a set of 19 epithelial alveolar
cells A549. The beads bind to integrins via anti-ICAMI1 coating.
From the erf fit of the cumulated distributions, the best estimate for
the average exponent is (@)=0.181+£0.014, and for the median
value of the prefactor is Ggy,==80(+25/-20)Pa.

stance [13], and is correctly taken into account by the me-
chanical model presented in Sec. V.

C. Other cell types

As reported in Table I, we have performed microrheologi-
cal experiments on several other cell types, using either
uniaxial stretching or optical tweezers, and in various coating
conditions. The individual cell behavior appears strikingly
independent of the cell type and of the experimental condi-
tions. When stretching the whole cell, the creep function J(z)
is accurately adjusted by a power law function of time ¢.
Similarly, in oscillating force experiments, the viscoelastic
modulus G,(w) behaves as a power law of the excitation
frequency. As seen in Table I, the average exponent () of
the power law always remains in the range 0.15-0.25, what-
ever the cell type and function: this holds for premuscular
cells (C2 myoblasts), epithelial cells (alveolar A549 and
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MDCK), fibroblasts (primary and 1929), and macrophages
(primary). Although the number of cells tested may not al-
ways be high enough to yield an accurate statistic, the pref-
actor G of the complex modulus at 1 Hz seems to follow a
log-normal distribution. Contrary to what is observed for the
exponent «, the median value Gy, of G, appears to depend
on the cell type and on the experimental conditions (see dis-
cussion in following section).

IV. COMPARISON WITH OTHER EXPERIMENTAL
RESULTS

The most prominent feature emerging from the experi-
ments is the robustness of the power law behavior, indepen-
dent of cells types and experimental conditions, as summa-
rized in Table 1. The average values (@) of the exponent
remain very close to 0.2. This result is independent of the
biological cell function, the length scale of the experiment,
and the nature of the complex transmitting the stress. Other
experiments performed on other cell types, and with different
techniques, confirm such universal features of the cell me-
chanical behavior.

A. Optical Magnetic Twisting Cytometry experiments

First, Fabry and co-workers [19] have performed optical
magnetic twisting cytometry (OMTC) on human airway
smooth muscle cells (HASM). The experiment consists of
applying an oscillatory torque to a magnetic bead bound to
the cell membrane, and optically tracking its displacement.
They have shown that the viscoelastic modulus G, follows
a power law of the driving frequency, in the
range 1072-100 Hz. They measured an exponent ()
=0.204+£0.002 in control conditions, at a temperature T
=37 °C. This exponent only varies when the cells are treated
with stiffening or depolymerizing agents of the cytoskeleton.
Still in control conditions, and assuming that the magnetic
beads are, on average, embedded by 10% into the cell ((O)
~37°), they compute a median value of G, at 1 Hz approxi-
mately equal to 2000 Pa [31]. However their definition of the
viscoelastic coefficient G,, which reduces to a static shear
modulus u at low frequency, is different from ours, G,,
which is defined from the Young modulus E. Assuming that
the cell medium is incompressible (E/u=3), this leads to
Gy = 6000 Pa for HASM cells. Lenormand et al. [24] have
adapted the OMTC technique, and measured the creep func-
tion J.(¢) on the same HASM cell type as Fabry and co-
workers [19], by applying a constant step torque on a mag-
netic bead bound to the cell. As expected, they found that
J (t) is proportional to 7%, with (a)=0.209+0.003. Converted
into elastic coefficient, the prefactor has the same order of
magnitude as in the oscillatory experiment.

For other cell types studied by OMTC [23], power laws
were again observed, with quite identical exponents: ()
=0.195+0.005 for mouse embryonic carcinoma cells (F9),
(a)=0.173+0.005 for human bronchial epithelial cells
J(HBE), (@)=0.200+0.009 for mouse macrophages (J744.A)
and (a@)=0.186+0.008 for human neutrophils. The associated
prefactors Gy, at 1 Hz could not be easily retrieved, since
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they depend on the exact angle of immersion ® of the bead
into the cells, which is not reported. Assuming that the height
of immersion is comprised between 10% and 30% of the
bead diameter (37° <® <66°), and following the simula-
tions of Mijailovitch et al. [31], Gy, falls in the range
130-900 Pa (F9), 1000-8000 Pa (HBE), 150010 000 Pa
(J744.A), and 500-3600 Pa (neutrophils).

B. Atomic Force Microscopy experiments

By probing cells with the oscillating tip of an atomic force
microscope (AFM), Alcaraz et al. [8] were also able to mea-
sure the frequency dependant viscoelastic modulus G(w)
=G'(w)+G"(w) for epithelial alveolar cells (A549), in the
range 0.1-100 Hz, at room temperature (7=20 °C). Con-
sistently with the present work and Fabry’s work, they ob-
serve that both G’ and G”" are proportional to w® with ()
=0.22. The corresponding mean value of Gy=G,(w)
=3G,(w) at 1 Hz is (G,)=2200 Pa. Probing the same cell
type (A549) by magnetic twisting cytometry (MTC), in the
same frequency range, Trepat et al. [32] found power laws
with an exponent {(@)=0.214 and a median value of the pref-
actor Gy: Gy;=~2000 Pa (this value is highly dependent on
the bead immersion, here taken equal to 30% on average).
Notice that we have measured the same exponent (a) in our
experiments on A549 cells (Table I). However the values of
Gy (or {(Gy)) are about threefold to fivefold higher in AFM
and MTC than the values measured by optical tweezers and
stretching rheometer (see Table I). Possible origins of these
disagreements are discussed below.

The same AFM technique was applied to human bronchial
epithelial cells (BEAS-2B) [8], which should not noticeably
differ from the HBE cells probed by Fabry et al. Their results
are very similar, leading to (@)=0.20 and (G,)=2400 Pa.
Independently, Puig-de-Morales et al. probed the same
BEAS-2B cell with MTC, at T=37 °C [33]. They retrieved
values of (a)=0.27 and of (G,) about one order of magni-
tude lower than in Ref. [32].

C. Active and passive microrheology on embedded probes

It is of great interest to mention the results of some pas-
sive microrheology experiments, consisting in measuring the
viscoelastic coefficients of the intracellular medium by fol-
lowing the motion of submicron particles embedded in the
cytoplasm. Yamada and co-workers [20] measured the mean
square displacement (Ar*(¢)), as a function of time, of
spherical endogenous granules present in kidney epithelial
cells COS7, from which they inferred the frequency depen-
dent viscoelastic modulus G(w). The motion of the granules
is clearly subdiffusive, and, although the authors do not ex-
plicitly mention this interpretation, the variations of G(w)
are consistent with a power law |G,(w)|=G(,0® in the range
1 <w<10* rad/s. The exponent « is of the order of 0.5 in
the perinuclear region, and 0.33 in the lamellar region, where
the density of actin is higher. The average value of |G, ()|
=3|G,(w)| at 1 Hz (w=27 rad/s) is (G,)=70 Pa in the peri-
nuclear region and (G,)= 210 Pa in the lamellar region. In a
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similar way, Tseng et al. [21] recorded the motion of car-
boxylated microspheres microinjected in 3T3 fibroblasts. It
is harder in this case to characterize their subdiffusive mo-
tion by a single exponent. However, the measured average
compliance of the cytoplasm at a time scale 7=0.1 s is in the
range 0.01-0.03 Pa~!, which leads to (G,) around
100-300 Pa at 1 Hz. More recently, Yanai er al. [14] used
optical tweezers to apply step forces on endogenous granules
embedded in human neutrophils, and showed that the re-
sponse is well represented by a power law of exponent about
0.5. Besides, Lau er al. [22] measured the two-point correla-
tion function of the mean-square displacement of embedded
particles. They found a power law, consistent with an expo-
nent « close to 0.25 for the complex shear modulus. Actu-
ally, a two-point microrheology experiment is expected to be
more sensitive to the cytoskeletal deformations than one-
point microrheology. This indicates at least that one must be
cautious when comparing the results of experiments per-
formed on embedded particles and on probes specifically
bound to transmembrane receptors.

In an attempt to synthesize this large amount of experi-
mental work, one observes enough common properties to
bring out some general features in the cell mechanical be-
havior:

(a) The microrheological behavior of the cell is quite ac-
curately described by power laws. This holds either for ac-
tive microrheology (viscoelastic modulus, creep function) or
for passive microrheology (diffusion of particles). This
clearly states that the cell mechanics involve a broad distri-
bution of response times.

(b) Except in particle tracking microrheology experi-
ments, in which the probes are not directly attached to the
cytoskeleton, the average exponent of the power law lies in a
narrow range: 0.15<<a<<0.25. This result is independent of
the experimental technique, of the probe lengthscale, of the
cell type and of the nature of the complex transmitting the
stress. Adding drugs which induce the stiffening (contractile
agents like thrombin, histamin), or the softening (disrupting
agents like cytochalasin D or latrunculin) of the cytoskeleton
[23,32,34], does not induce a dramatic change of this expo-
nent. Only the inhibition of the actomyosin activity by
blebbistatin may cause « to lower down to about 0.10 [13].
The very robust feature of the cell response can only be
explained by some common structural organization of the
cytoskeletal network, independent of the length scale and of
the biological cell function. In Sec. V we propose to model
this by a self-similar assembly of elementary mechanical
units.

(c) Within a set of cells of the same type, probed by the
same technique, we observe that the repartition of the vis-
coelastic modulus Gy=|G,(w)| at 1 Hz is asymmetric and
clearly follows a log-normal distribution. This distribution is
characterized by its median value G, =exp({In(Gy))). Other
authors also reported such log-normal repartitions
[23,32,34]. The model developed in Sec. V provides an in-
terpretation of this log-normal distribution.

(d) from one cell type to another, but also within a same
cell type from one experimental technique to another, mea-
surements of Ggy—or of (Gy) for the authors who do not
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make the distinction between G, and (G,)—present a wide
dispersity (from about 10% to about 10* Pa). A global and
consistent interpretation of the origin of this dispersion ap-
pears much more difficult to elaborate. Indeed, several com-
peting factors can be invoked to explain the observed differ-
ences, some of them being related to intrinsic biological
mechanisms, others to experimental conditions or possible
artifacts. We enumerate below some of them.

(i) The cell type, associated to a given function, is ex-
pected to have a relevant influence on the cell average stiff-
ness. The density of actin in the cell, but also the structure of
the actin network should indeed largely determine the cell
rigidity. Moreover, the activity of molecular motors and their
spatial distribution are known to contribute to the cytoskel-
eton dynamics, and thus to its mechanical behavior. Actually,
it appears difficult to bring out from existing data some me-
chanical characteristics associated to a given cell type, all the
more difficult as other factors do also influence the cell stift-
ness.

(ii) In both OMTC and optical tweezers (OT) experi-
ments, the determination of G is very sensitive to the pre-
cise knowledge of the bead immersion angle ®. This param-
eter is difficult to measure with a good accuracy from the
images of single cells. Besides, taking an average value for
(®) may lead to overestimate the contribution of weakly
bound beads, and thus to underestimate (G,) [12,35]. More-
over, Gy is not calculated in the same manner according to
different authors. In this work, G, (w) is derived from for-
mula (B5), where the analytical function f(®) accounts for
the ® dependence [formula (B3)]. In OMTC experiments
[19,23,24,32,34], the ® dependence is included in the factor
B [formula (B6)] numerically computed in a finite element
model [31]. A comparison limited to the bead rotation con-
tributions in both cases shows that the numerical prefactor in
Eq. (B5) is about twice the one in Eq. (B7). This may partly
explain why, for the same cell type, the reported values of
Gy are smaller in OT experiments than in OMTC experi-
ments.

(iii) Tt is known that the mechanical properties are not
homogeneous inside a same cell, and also depend on the cell
activity. For fibroblasts, Kole et al. [36] have measured that
the stiffness in the lamellipodium, where the actin network is
denser, is about four times higher than in the perinuclear
region. This difference almost vanishes for quiescent fibro-
blasts. Besides, for migrating neutrophils, Yanai et al
showed that (G) is almost 10 times smaller in the leading
edge than in the cell body or tail [ 14]. In this case the relative
fluidity of the pseudopod may be related to a cytoplasmic
flow, driven by a pressure gradient. For spread cells like
HeLa, the viscosity experienced by magnetic endosomes em-
bedded in the cytoplasm is found on average eight times
higher in the perinuclear region than further away from the
cell center [18]. In this last case the correlation to the cell
rigidity is not discussed. Other authors [37] have reported
that the average cellular medium rigidity decreases by sev-
eral orders of magnitude when the size of the mechanical
probe increases from a few tens nanometers (AFM tip) to a
few microns (micropipettes). Although such observations
may depend on the cellular type, and consequently general
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trends are not easy to derive, these different factors may
contribute to the dispersion reported above.

(iv) Cell viscoelastic properties are also sensitive to the
temperature. Lo and Ferrier [38] performed mechanical tests
on osteosarcoma cells, and observed that the average stiff-
ness, estimated from a Kelvin-Voigt model, decreases by a
factor 1.5 when the temperature increases from
22 °C to 37 °C. This effect probably contributes to explain
the difference between the high G, (or (G,)) values mea-
sured on A549 and BEAS-2B cells with AFM at 20 °C
[8,32] and the lower ones measured by OT or MTC tech-
niques at 37 °C [this work, [23,33]].

(v) Comparing the transmission of the mechanical signals
through different kinds of receptors remains largely an open
question. On HASM cells probed by MTC, it has been
shown that the power law exponent does not significantly
vary when the bead is covered by RGD (binding to 31 inte-
grin), vitronectin (VN) (preferentially binding to B3 inte-
grin), uPA urokinase (indirectly binding to the cytoskeleton
via caveolin), or AcLDL (which binds to a nonadhesive site,
not linked to the cytoskeleton) [34]. However, in the same
conditions, the relative value of G, decreases by a factor of
4 from RGD to VN, and a factor of 10 from RGD to uPA or
AcLDL. In this work, we report a difference in the viscoelas-
tic coefficients measured on the same A549 cells through
integrin and ICAM-1 receptors on the one hand, on the same
C2 cells through glutaraldehyde and cadherin on the other
hand (Table I). However, in all these studies, the amount of
coating was never precisely controlled, which may also bias
the results [see below point (vi)]. Further works are neces-
sary before drawing conclusions about the influence of the
receptor and/or ligand couple.

(vi) Finally, this analysis must include questioning about
the structure of the contact itself, which depends on the
amount of molecular bonds, and on the dynamical evolution
due to cytoskeletal remodeling. Concerning this last point, it
is known that applying a constant stress at a focal contact
induces within a few minutes local recruitment of integrin,
actin and other proteins involved in the contact assembly,
which reinforces the contact [39—41]. A similar effect was
observed on adherent junctions [42]. Bursac et al. [43] have
observed that applying a high amplitude oscillating stress to
a magnetic bead bound to the cell makes immediately the
contact more compliant, and that the contact strengthens
again within a few minutes after releasing the stress. But to
our knowledge, there is no report of the evolution of G,
during the spontaneous formation of a bead-cell contact, nor
during its reinforcement under a continuous stress. A related
concern is to determine how the initial number of molecular
bonds at the bead-cell contact affects the mechanical re-
sponse. The coating protocol of the bead by the ligand is
obviously a key step, but no method has been yet reported to
quantify the amount of ligand in a reliable way.

The above discussion points out the existence of numer-
ous physical and biological parameters, which may interfere
in opposite ways, and probably induce the large dispersion of
the measured values of the parameter G. In the absence of
more selective experiments focusing on the influence of each
parameter, it is yet not possible to go further into a detailed
interpretation of the observed differences.
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V. A MODEL FOR THE RHEOLOGICAL BEHAVIOR
OF A SINGLE CELL

There are numerous examples in the literature of complex
viscoelastic systems showing power law rheological behav-
iors. This is for instance the case of colloidal systems close
to the sol/gel transition [44], or of “soft glassy materials,”
which includes foams, pastes, emulsions, and slurries
[45,46]. A common feature of all these systems is that, due to
their structural complexity, their dynamics cannot be de-
scribed by a small, finite number of relaxation times. In these
systems, the mechanical dissipation must take into account
multiscale dynamical processes, so that their response to an
external mechanical stress involves a broad and dense distri-
bution of relaxation times. Soft glassy materials are systems
dominated by structural disorder, metastability, and rear-
rangements, and a general description of their mechanical
properties has been developed [47,48]. This model might ap-
pear as a good candidate to describe the cell medium. In-
deed, it is an out-of-equilibrium and disordered system, in
which the rearrangements (through dynamical crosslinking,
actin polymerization, and molecular motors activity) are
made possible by an external supply of chemical energy.

However, at the present stage, the analogy between the
general description of soft glassy materials and the cytoskel-
eton network dynamics remains quite formal, since the el-
ementary biophysical and biochemical mechanisms which
govern the cytoskeleton rearrangements are not explained in
this description. Some authors have developed a more phe-
nomenological approach, where the cytoskeletal network is
seen as a polarized liquid crystal, and its dynamics is coupled
to the activity of molecular motors [49]. Quantitative predic-
tions about the microrheological behavior of the cellular me-
dium has yet to be obtained from this model.

Here we propose another description, intermediate be-
tween formal comportemental approaches and more phe-
nomenological structural models. We consider that the cy-
toskeleton is made of many interconnected units of different
length scales (from actin individual filaments to actin
bundles and stress fibers). Their size continuously spread
from the nanometer scale to the scale of the whole cell. We
describe the mechanical response of each unit, labelled by
the index i, by a simple Kelvin-Voigt model with a response
time 7;. Given the cytoskeleton structure, it is reasonable to
assume that the characteristic response times 7; are widely
and densely distributed. The elementary creep function j,()

associated to each unit i is such that %:exp(—t/ 7).

The description in terms of Kelvin-Voigt units may appear
oversimplified, since it does not seem to take into account
the active molecular mechanisms related to the molecular
motors activity or to the filaments remodeling. However, a
precise description of the elastic and dissipation processes at
the molecular level may not be necessary to derive macro-
scopic mechanical behaviors: the spring and the dashpot as-
sociated in each unit schematically represent the storage of
the elastic energy in actin filaments, bundles, and stress fi-
bers, and its dissipation. This dissipation may include several
processes, like cytoskeleton remodeling, molecular motors
activity, and passive viscosity.
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FIG. 10. (Color online) The cytoskeleton network is modelled as
an infinite assembly of elementary units labelled by the index i,
each of them showing a simple Kelvin-Voigt behavior with a re-
sponse time 7; (a) In the ideal case, the relaxation times 7; are
assumed to be exactly distributed according to a power law 7;
=7, l7V/0-@)] where 7, represents the largest relaxation time in the
cell. This distribution Py is represented in (b). To take into account
some natural dispersion, a given cell k is modelled by a proportion
p <1 of relaxation times, randomly selected from P(. An example
of distribution Py, is represented in (c).

The choice of a generalized Kelvin-Voigt model, where
the units are associated in a series [Fig. 10(a)], is based on
convenience, and is adapted to describe creep experiments.
The choice of the dual representation, namely, the general-
ized Wiechert-Maxwell model (in which Maxwell elements
are placed in parallel), would have yielded the same results.
Those two representations are equivalent, since any given
model can be reduced to an equivalent series or parallel
model [55]. It should be clear that it is not because we con-
sider viscoelastic elements in series that the complex fila-
ment network of the cytoplasm is organized in such a way.

The next important ingredient of this model is the distri-
bution P(7;) of relaxation times 7;. We assume in the follow-
ing that the cytoskeletal structure in the cell is close to a
self-similar one. This assumption is especially supported by
fluorescent images of the actin cytoskeleton, showing simi-
larities between the large stress fibers structures at the scale
of the cell and the structure of individual filaments at the
nanometer scale. This implies that the elementary units in-
troduced above are distributed according to a power law: the
number of units having a given size [ is taken proportional to
7%, where &> 0 represents the fractal dimension of the net-
work. Concerning the dependence of the response time 7;
with the size /; of elementary units, it is reasonable to assume
that it is depicted by a simple power law: T,-OCll-B. As a con-
sequence the distribution of times 7; in the cell will itself be
a power law of 7: P(7)% 7% with a=1-£/8. Actually,
such a power law distribution is a commonly used assump-
tion in several models of complex viscoelastic solids [50].
This multiscale coupling between elasticity and dissipation
processes is a main characteristic of structural damping.

Assuming first that the relaxation times are continuously
distributed according to a power law P(7)=B7%72 it is
straightforward to show that the creep function response J(r)
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of the system also follows a power law of time. Indeed the
resulting time derivative of the creep function may be calcu-
lated as

. dJ(t t

J(r) = dJ(t) = f P(T)exp<— —)dr:BF(a— D>, (5)
dt T

where I" represents the Euler function (defined in Appendix

A). By integrating this relation over the time ¢, one finds

() = %z%%(i)a. ©6)

A

According to Eq. (3), the viscoelastic complex modulus
G,(w) may then be expressed as a power law of frequency:
|Go(@)|=Golw! ).

In our model, the exponent « of the power law is related
to the fractal dimension & of the network and to the exponent
B3 characterizing the dependence of the response time 7 with
the scale /. Lacking more information about & and S, it is not
possible at this stage to make a quantitative prediction for a.

Now we turn to the case of a discrete distribution of re-
laxation times 7;. The calculations will be developed in two
steps:

(1) In a first step (i) we assume an ideal power law rep-
artition P, of the response time 7;, and we show indeed that
the resulting creep function Jy(7) is a power law of time.

(2) In a second one (ii) we use a set of distributions Py,
extracted from P, by randomly deleting a given fraction of
the response times 7;. We calculate for each distribution P,
the new creep function J,(r), and analyze the distribution of
Ji(t) over different P;. As will be shown in the discussion,
this distribution mimics the distribution of experimental J(¢)
measured for a set of cells belonging to the same cell type.

(i) Let us first assume that the relaxation times 7; of el-
ementary units are exactly distributed along the time axis
according to 7;=7,,il""1-9] with 0< < 1. The label i var-
ies from 1 to %, so that 7,, represents the largest relaxation
time in the system. Figure 10(b) shows a schematic drawing
of this distribution P. The particular form of this repartition
has been chosen to reduce in the continuum limit to a power
law distribution P(7)=di/dro 2. In this limit, one recov-
ers an exact power law for the corresponding creep function
Jo(1), as obtained by integrating

; dj; N Iy .
Jo() =2 " = f exp(— ;)dl
i 1 i

T pe a-2 P
=f (1- a)(—) exp(— E)d— =By*. (1)
0 T T) T

To take into account the actual discrete character of the 7;
distribution, we have performed numerical simulations,
where we calculated the exact value of JO(G), as a function of
the reduced time 6=t¢/7,,. The resulting function, shown in
Fig. 11 (top curve) for a typical value @=0.20 of the expo-
nent, was obtained by summing 103 elementary units (i=1 to
10°). This covers six orders of magnitude (from 1 to 107%)

for the reduced response times 7,/7,,. As expected, Jo(6) is
perfectly adjusted by a power law of exponent a—1=-0.8, in
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FIG. 11. (Color online) Plot of the time derivative of the creep
function dJ/d @, numerically calculated for the ideal power law dis-
tribution P (top curve), and for 20 more realistic distributions P,
(bottom curves) randomly extracted from P, as explained in the
text. The time scale is normalized by the largest time relaxation in
the cell 7,,. The simulations involve 10° elementary units, and the
reference exponent in the distribution Py is equal to 0.20. As ex-
pected, the response function dJ,/d#é corresponding to the distribu-
tion P exactly merges into a power law (dashed curve) of exponent
a—-1=-0.8, in the range 10~%< #< 1. For the distributions Py, the
response functions dJ,/d6 are well adjusted by power laws in the
range 107°< <1072, with a distribution of exponents a; close to
a.

the range 10°< #<1. An increased number of elementary
units would only extend the range of validity of the power
law at the smallest times; it is therefore unnecessary.

(ii) In order to build a more realistic picture of the cytosk-
eleton dynamics, we assume now that only a proportion p of
the elementary Kelvin-Voigt units are actually present in a
given cell. Indeed, the response times 7; are very unlikely to
follow the smooth distribution P in a real cell. One has to
take into account the dispersion of results actually observed
from one cell to the other. A given cell should then be rep-
resented by its actual distribution P, of time constants, con-
structed by selecting, with a given probability p, a random
set of relaxation times 7; from the distribution P,. An ex-
ample of P, distribution is schematically represented in Fig.
10(c), together with the original P, distribution. Under these
assumptions, the creep function Ji(r) of the k cell will be
calculated from J,(t)=3,p.(dj;/dt), where p; is a random
variable equal to 1 with a probability p and to 0 with a
probability 1-p. The underlying response times 7; remain
distributed according to ;= 7,,il=1/(1=)],

Numerical calculations of J,(6) vs the reduced time 6
=t/ 7,,were done for 500 different realizations of P, distribu-
tions (k=1 to 500), with the same probability p=0.1. A set of
20 of them is shown in Fig. 11 (lower curves). These curves
show that, at least in the range 10°°< <1072, all the J «(0)
functions roughly behave as power laws of 6, and exhibit

approximately the same exponent a—1=—-0.8 than Jy(6).
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Each curve J,(6) was fitted by a power law J,(6)=b; 6% " in
the range 107°< #<1072, leading to an exponent a; and a
prefactor b, for each realization k. The histograms of «; and
b, are presented in Figs. 12(a) and 12(b). The distribution of
oy is symmetric, and is well fitted by a Gaussian curve cen-
tered on the value @=0.20. On the contrary, the histogram of
by, is clearly asymmetric, but one recovers the symmetry by
plotting the histogram of In(b;) [Fig. 12(c)]. A first prediction
of these simulations is that, over several realizations mimick-
ing the natural dispersion over different cells, the exponents
a and prefactors b, are, respectively, normally and log-
normally distributed. As shown in Sec. VI, this is quite con-
sistent with the normal and log-normal distributions of a and
G, experimentally measured on a given set of cells. The
width of the distributions calculated in the simulations de-
pends on the drawing probability p. In the following, the
particular value p=0.1 has been chosen to match the stan-
dard deviations of experimental data.

Another important feature emerging from these simula-
tions is that the exponent «; and prefactor b, of the power

law jk(ﬁ) are not independent parameters. Figure 13 repre-
sents a plot of In(by) vs «; for 500 different realizations (k
=1 to 500): In(b;) and «; appear strongly correlated through
a linear relationship. The slope s=d[In(b;)]/d; is found to
be equal to 9.8 for the choice of drawing probability p=0.1.
Other numerical tests (not shown here), indicate that this
slope s is almost independent of the choice of p in a wide
range: 0.01 <p <0.8. We will use s=10+0.5 to compare this
result with experiments in the next section.

VI. DISCUSSION

We have noticed in Sec. III that, for a given set of cells
belonging to the same cell type and submitted to the same
experimental protocol, the measured exponents a and pref-
actors G at f=1 Hz, respectively, follow a normal and a
log-normal distribution (Figs. 5 and 7-9). In the model pre-
sented in Sec. V, the variability from one cell to another is
simulated by the choice of a particular distribution P, of
response times 7;, randomly selected among a general power
law distribution P,. We have already pointed out that this
model also leads to normal and log-normal distributions for
the exponents «; and prefactors b, determining the creep
function J,(¢). Introducing a dimensionless time 60=t/7,,
normalized by the largest time relaxation 7,, of the cell, we

have shown that dJ,/ dt:Jk(ﬁ):ka“k‘l, and consequently
J(0)=(b/ ay) 0. Using Eq. (A6), we predicted the relation-
ship between the exponent ¢, and the viscoelastic modulus at
w/2m7=1 Hz:

akﬁflk_l(ZW)“k 1

Gy =G (w=2m)|= T(+a) by

(8)

As far as the exponents «; remain close to the averaged
value a, a log-normal distribution for b, corresponds to a
log-normal distribution for G, 1/b,. This demonstrates
that so far the model predictions are consistent with experi-
mental data.
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FIG. 12. (Color online) Histograms of the distributions of the
exponents «; (a), of the prefactors by (b), and of their logarithms
In(by) (c). These quantities are measured from the numerically cal-
culated curves dJy/d6 for 500 different realizations of P, distribu-
tion. While the distribution of exponents «; is symmetrical, the
distribution of prefactors by is clearly asymmetric. The cumulated
distributions and their best fits by erf functions are also represented
[(a) and (c)]. They show that, according to this model, a; and by
are, respectively, normally and log-normally distributed.
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FIG. 13. (Color online) Plot of the prefactors In(b;) vs expo-
nents ¢y, for 500 different realizations of P, distribution. As can be
seen, the model predicts a strong linear correlation between these
two quantities.

To step further into the comparison between the model
and the data, it is noteworthy to focus on the correlations
between exponents «; and prefactors G,. Figure 14 gathers
the experimental data of In(G,) vs « for all the C2 cells, as
determined either in optical tweezers or uniaxial stretching
experiments. Despite a noticeable dispersion of the results,
In(G,) appears to be an increasing function of the exponent
a. This is consistent with the model presented in Sec. V,
which predicts a correlation between In(b;) and a;. Imposing
a linear relationship between In(G;) and « in Fig. 14, one
measures a slope s'=d[In(Gy)]/day=5.2. A quantitative
comparison with the model is then possible, since s and s’
are related through:
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0.2 0.3 0.4 0.5
Exponent o

FIG. 14. (Color online) Plot of the experimental values of the
prefactors In(Gy) vs exponents «, measured for C2 myoblasts. The
data from optical tweezers experiments (disks) and stretching rhe-
ometer experiments (squares) are plotted together. Despite the dis-
persion of the results, In(G,) appears to be an increasing function of
the exponent «. This is consistent with the prediction of the model.
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. d[In(Goy)] =—s+In(7,) +In(27)
da’k a=(a)
+L_¢( +1) )
@ a+1),

where (a)=d[In(I'(«) ]/da is the digamma function [51].
It is possible to make the measured value s’ =5.2 consistent
with the predicted value s=10 by adjusting the only un-
known parameter in our model 7,, which represents the
longest relaxation time in the cell. This adjustment leads to
7,,~ 3200 s for the C2 cell type. Since 6=t/7,, the reduced
time range 107°<#<1072 then corresponds to a real time
range 0.003<r<<30's, which exactly matches the experi-
mental range of our measurements. This reinforces the valid-
ity of our approach.

The same analysis, performed on our data on alveolar
epithelial cells A549, also showed a correlation between the
measured exponents «; and prefactors G, (data not shown).
From the slope s'=d[In(Gy)]/da;=2.8 we infer that the
highest response time is 7,,~300 s for this type of cells.
Other experiments [23] also depicted a linear relationship
between the viscoelastic modulus G, (measured at 1 kHz)
and the exponent a for HASM cells. In their case, the slope
s"=d[In(G;))/da;~ 12, measured at 1 kHz (Fig. 10 in
[23]), yields a typical time 7,,~ 3200 s.

It is remarkable that these estimates of the longest time
response in different cell types, derived from different ex-
periments, are roughly consistent with each other and lie in
the range 5 min to 1 h. Moreover, we emphasize that their
common order of magnitude is quite reasonable, as far as it
effectively corresponds to a typical relaxation time at the
scale of the whole cell. Indeed, an independent rough evalu-
ation of 7,, may be obtained by dividing a typical value of
the cytoplasm viscosity at long time scale (~10 kPa s) [3,9]
by a typical Young modulus (~ 10> Pa) measured at the cell
scale in quasistatic experiments. Beyond this time range,
some macroscopic remodeling processes (treadmilling, sig-
nalization cascades) are known to take place and to interfere
with the cell mechanical properties.

VII. SUMMARY AND CONCLUSIONS

This study makes a parallel analysis of the results ob-
tained by two different microrheological experiments on
single living cells, and compares them with other data gath-
ered from various works in the literature. It allows to bring
out some striking common features in the mechanical prop-
erties of the cytoskeleton network.

The mechanical response function presents a quasiuniver-
sal power law behavior, whatever the experimental technique
and the cellular type: the viscoelastic complex modulus of
the cell is a power law function of the exciting mechanical
frequency f. Correlatively the creep function of the intracel-
lular medium is a power law of elapsed time, with the same
exponent a. The value of this exponent a= 0.2 is remarkably
homogeneous throughout the large panel of studied cell
types, whatever the experimental techniques and conditions.
It does not seem to either depend on the probe size, nor on
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the typical length scale on which the experiment is per-
formed. This clearly demonstrates that there is no character-
istic dissipation time in the cellular response, or more pre-
cisely that these relaxation times are broadly distributed over
a wide time interval, extending at least from 0.01 s to 100 s.
This is a characteristic of structural damping, where the
mechanisms responsible for the storage of elastic energy and
its dissipation are strongly correlated.

Moreover, the prefactor of the response function, which
represents the value of the elastic modulus at a given refer-
ence frequency, varies by almost two orders of magnitude,
according to the cellular type and to the experimental condi-
tions. Interestingly, for a set of cells of a given type, probed
in the same experiment, the prefactor distribution found is
log-normal. The possible influence of several physical or
biological parameters on the average value of this prefactor
is discussed: temperature, probe size, nature of the mechani-
cal receptor, and cell inhomogeneities. Further studies should
concentrate on systematic comparisons between different cell
types, probed in identical experimental conditions: this is the
only way to—perhaps—associate a given cell function with
a characteristic viscoelastic behavior.

The semiphenomenological model presented here is able
to accurately predict the mechanical response of a living cell
submitted to a controlled stress, in a wide range of time
scales. The mechanical behavior of the cell is modelled by
associating a large number of elementary Kelvin-Voigt units,
which account for the different scales of the cytoskeletal net-
work. Assuming a self-similar structure of the network and a
power law distribution of time constants, one recovers all the
features of the macroscopic behavior observed on different
cell types. This approach quantitatively accounts for the
power law responses measured in different rheological ex-
periments, and also for the normal and log-normal distribu-
tions retrieved for the exponents and prefactors. The largest
relaxation time in the cell, which is the only adjustable pa-
rameter of the model, is consistent with other independent
estimates. A further step will consist in interpreting the dis-
sipative elements in term of elementary biological mecha-
nisms, such as molecular motors activity and crosslinkers
dynamics, which play a crucial role in the cytoskeleton re-
modeling.
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APPENDIX A: RELATION BETWEEN THE CREEP
FUNCTION J(f) AND THE COMPLEX MODULUS G,(w)

When submitting a given material to a varying stress (1),
the induced strain &(¢) is related to o(z), in the linear regime,
by
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t

e(t)=J()o(0) + J J(t—1t")o(t"dt',

0

(A1)

where J(¢) is the creep function (i.e., the strain generated by
a step stress, normalized by the constant stress value). De-
fining the Laplace transform by L, f(1)]=/(s)=/ o Ce T f(n)dt,
Eq. (A1) leads '

&(s) = sJ(s)(s). (A2)

On the other hand, in response to an oscillating stress o
=0(w) exp(jwt), the induced strain can be written &
=e(w) exp(jwt), which allows to define a viscoelastic com-
plex modulus G,(w) as G,(w)=0(w)/e(w). In the limit w
—0, G, (w) reduces to the Young modulus E of the material.

Filf()]=f(w)
=[*7e7If(1)dt is related to the Laplace transform by f(w)
=f(jw), one can rewrite Eq. (A2) as é(w)= jwj(w)é'(w).
Consequently, a general relation exists between the vis-
coelastic modulus G,(w) and the creep function J:

Since the Fourier transform

1 B 1
jol(jo) jol(w)

G (w) = (A3)

Now we restrict ourself to the particular case where J(r)
behaves as a power law of time: J(r)=A(/1,)“. Here ¢ is an
arbitrary reference time, chosen for convenience equal to 1 s.
The Laplace transform of J(f) is equal to

Aor(l + (X)
s(stg)®

where I'(1+a)=[§"e¢x%x is the I Euler function. In this
case the corresponding viscoelastic complex modulus takes
the form

J(s) = : (A4)

. (j(,()to)a
G =G jﬁ: — A5
@) =[Ger*= 7 E (AS5)
with a complex norm
0ty
= A6
| €| Aor(l + a/) ( )
and a phase
aTr
=—, A7
5 (A7)

which is independent of the frequency w.

APPENDIX B: FORCE-DISPLACEMENT RELATIONSHIP
FOR A BEAD PARTIALLY IMMERSED IN AN
ELASTIC MEDIUM

We recall here the main results of the analytic calculation
of the displacement of a rigid spherical bead, immersed in a

lAccording to the usual definition of the compliance J*, one has
J(s)=5J(s).
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semi-infinite homogeneous medium, and submitted to a force

F tangential to the medium boundary (see Fig. 3) [12]. We
assume that the medium is incompressible, so that the static
Young modulus E and the shear modulus u are related by
E=3u.

(i) Bead immersed in an infinite medium. In the simple
case of an infinite incompressible medium, the displacement
x of the center of the bead submitted to a force F' is given by
[52,53]

F=27REx=67Rux, (B1)
where R represents the bead radius.

(i1) Bead in contact by a small area with a semi-infinite
medium. This case corresponds to a bead weekly immersed
in the medium, i.e., where the half-angle ® of the immersion
cone is small. We have shown [12] that in this limit the
displacement x of the bead center results of the combination
of a translation of the bead and a rotation around the region
of contact, and that F' and x are related through

F=27REf(O)x, (B2)
where f(®) is a purely geometrical factor approximately
given by

9 3cos ® ) (B3)

®)=1
1(®) /<4sin®+2sin3®

In the denominator, the first term stands for the contribu-
tion of the bead translation, the second one for its rotation.
This analytic expression is consistent with other numerical
studies describing the pure rotation of a magnetic bead sub-
mitted to a torque [31,54]. In particular, all the works agree
on the fact that the bead rotation is proportional to sin® @.
Only the numerical prefactor differs by approximatively a
factor of 2 between the analytical and numerical approaches.
We have shown in [12] that Eq. (B3) can be extrapolated to
the full range of angle ® accessible to experiment, typically
20° <@ <70°. As a consequence, we use this equation to
interpret our data in the main course of this paper.

Equations (B1)—(B3) describe the force-displacement re-
lationship in the static case where F (and x) are kept constant
with time. When the bead is submitted to an oscillatory force

F=F(w) exp(jwr), they can be generalized to define the vis-
coelastic complex modulus G, as

F(w) = 27RG,(w)%(w) (B4)

for the case of a bead totally immersed in the medium, and

F(0) = 27RG ()f(0)3(w) (B3)
for the case of partial immersion. Here we assume that f(0)
keeps the same expression as in Eq. (B3). In this definition,
G, reduces to the Young modulus E as the frequency goes to
zero. Notice that this convention is different from the one
proposed by other authors [31] who define a viscoelastic
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modulus G,=G,/3 from the shear modulus u. For instance,
in the case of magnetic beads, the bead rotation @ is related
to the applied specific torque T (torque per unit volume) by

T,=6BG®, (B6)

PHYSICAL REVIEW E 74, 021911 (2006)

where 3 is a numerically computed geometrical factor. In the
limit of a weekly immersed bead, Eq. (B6) takes a form
equivalent to Eq. (B5),

F=87RG,fx. (B7)
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